
It may seem absurd, almost grotesque. To make artificial human organs using a cotton candy machine? As such would not be possible, of course, but the principle of functioning of such machines could be adapted for the construction of others capable of making artificial human organs, starting with the simplest ones, such as kidneys, liver and bones.
For several years, Leon Bellan of Vanderbilt University in Nashville, Tennessee, USA, has been tinkering with cotton candy machine, causing them to produce networks of tiny strands comparable in size, density, and complexity to the patterns formed by Capillaries, small thin-walled vessels that supply oxygen and nutrients to the cells and carry away the waste. Its objective has been to fabricate fiber nets that can be used as templates from which to make the capillary systems necessary to create life-size artificial organs.
Bellan and his colleagues have succeeded in using this unorthodox technique to produce a three-dimensional artificial capillary system that can maintain viable and functional cells alive for more than a week, which is a considerable improvement over the methods used today . And one is the cotton candy machine.
Many tissue engineering specialists, including Bellan, are currently focusing their efforts on investigating a class of materials described as hydrogels, and on using these materials as scaffolds to hold cells inside three-dimensional artificial organs.
Rheumatic Heart Diseases: causes and treatments
Thus, to generate tissues that have the thickness that is normal in real organs, and to keep cells alive throughout the scaffold, researchers must construct a network of channels that allow fluids to flow through the system, simulating the Natural capillary system. And this is very difficult to achieve. Among other things, traditional methods may require weeks for cells to create such a network. So it is not possible to stack many cells or those in the center begin to die before the essential capillary network is formed.
The new technique based on cotton candy machine offers a potential solution to all these problems. The method of spinning cotton candy can produce channels ranging from 3 to 55 microns, with an average diameter of 35 microns.
What is Nad+
The researchers first woven a network of PNIPAM threads using a machine that closely resembled one that made the candy. A solution of gelatin in water (a liquid at 37 degrees) was then mixed and human cells added. The addition of an enzyme commonly used in the food industry (transglutaminase, dubbed “meat glue”) causes the gelatin to acquire a permanent form of gel.
The hot mixture is poured onto the PNIPAM structure and kept in an incubator at 37 degrees. Finally, the gel containing cells and fibers is removed from the incubator and allowed to cool to room temperature, at which time the scaffold-like fibers dissolve, leaving in place an intricate network of micrometer-scale channels . Maybe this is the future cotton candy machine.
[wiley]
We need your help
- Códigos de SPTS Infinite Power Grind: agosto de 2024
- El manga Shaman King: The Super Star se reanuda el 24 de agosto – Noticias
- La segunda temporada de la serie animada china ‘A Herbivorous Dragon of 5,000 Years’ se convierte en un villano injustamente: revela su apertura, teaser y elenco adicional – Noticias
- ¿Qué es lo más nuevo? Call of Duty ¿Juego?
- ¿Es bueno el despertar de la luz en las frutas Blox?
- Códigos de Pass the Bomb (actualizado en 2024)
- Códigos de Anime Ascensions Simulator – Lista actualizada 2024 –
- Roblox: Cómo conseguir el abrigo oscuro en Blox Fruits
- La serie de acción real Golden Kamuy contará con Kazuki Kitamura – Noticias
- Códigos de Anime Boxing Simulator – Actualizado 2024 –